Plant Morphology, Paradermal Anatomy, and Leaves Metabolite Profiles of Rhododendron multicolor Miq. from Cibodas Botanic Garden, West Java, Indonesia

Authors

DOI:

https://doi.org/10.21776/ub.jsmartech.2025.006.01.32

Keywords:

Morphoanatomy, metabolite compounds, Rhododendron multicolor Miq, Vireya, Cibodas Botanic Garden

Abstract

Rhododendron multicolor Miq. exhibits distinctive morphoanatomical characteristics and various bioactive compounds with medicinal and horticultural potential. Numerous studies indicated Rhododendron species are widely utilized as medicinal and ornamental plants, owing to their diverse phytochemical profiles and distinctive morphoanatomical characteristics. However, comprehensive studies of the morphoanatomy and leaves metabolite profile of R. multicolor are still limited globally, as well as its minimal utilization by local communities, highlighting a significant knowledge gap. Therefore, this study aimed to analyze the morphology, paradermal anatomy, and metabolite profile of young leaves and mature leaves of R. multicolor. Morphoanatomy characteristics were analyzed descriptively, anatomical features were analyzed using specific formulas, and metabolite profiling was analyzed using qualitative phytochemicals and gas chromatography-mass spectrometry (GC-MS). The result shows that R. multicolor is a shrubby plant characterized by funnel-shaped flowers in a vibrant red hue, along with narrowly elliptic, scaly leaves. The scales are stellate lobed irregularly with lower density than stomata; the epidermis is polygonal to irregular that has a higher density compared to stomata. The results of the qualitative phytochemical test of Rhododendron multicolor are that it contains phenols, flavonoids, Mayer alkaloids, Bouchardat alkaloids, Dragendorf alkaloids, tannins, and saponins. Based on GC-MS analysis of young leaves and mature leaves of R. multicolor, a total of 31 metabolite compounds from 21 compound groups were identified, with the major compound being squalene from the terpenoid group, which has the potential to be an antioxidant, anticancer, antibacterial, antifungal, antitumor, and cardioprotective.

References

Liao, R.L., Xue, D., Neilsen, J., Wang, J.H. & Ma, Y.P. 2015. New Species of Rhododendron (Ericaceae) from Shangri-La, NW Yunnan, China. Phytacsia 238 (3), pp. 293–297.

Ma, Y.P., Chamberlain, D.F., Sun, W.B. & Zhang, CQ 2015. New Species of Rhododendron (Ericaceae) from Baili Rhododendron Nature Reserve, NW Guizhou, China. Phytacsia 195(2), pp. 197–200.

Yang C.H, Xie Z.G, Yu Y.F, & Yang Z.R. 2015. Rhododendron leigongshanense (Ericaceae), a New Species from China. Bangladesh Crop Taxon J., 22(2), pp. 119-123.

Gautam, V., Kohli S.K., Kapoor, D., Bakshi P, & Ahmad P. 2020. Stress-Protective Effect of Arboreum Rhododendron (MEL) Leaves on Chromium-Treated Vigna radiata Plants. J Plant Growth Regulations.

Liu, J.X., Su, G.H., Peng, R.X., Bi, C.H., & Qiu, H.M. 2024. Recent review of the Genus Rhododendron Since 2010: Traditional Uses, Phytochemistry, and Pharmacology. Phytochemistry, Vol. 217, 113899.

Jha, A. K., Khalid, M. A., & Labh, S. N. 2024. In Vitro Antioxidant and Antibacterial Activities of Medicinal Flower Laligurans Rhododendron arboreum Collected from Kathmandu Valley, Nepal. International Journal of Food Science, 2024, 6073042.

MacKay, M.B. & Gardiner, S.E. 2017. Geographical Analysis of the Red List Taxa of Rhododendrons (Ericaceae) by Country of Origin Identified Priorities for Ex-situ Conservation. Blumea (62), pp. 103–120.

Rahman, W., Conlon, T.A.C, & Sharp, N. 2012. Rhododendron multicolor Miq.: the Spectacular, Red-flowered form Rediscovered; Rhododendrons, Camellias and Magnolias. RHS Royal Horticultural Society, London, pp. 117-118.

Makoyana.brin. 2024. Ericaceae Collection Details. Available at: https://makoyana.brin.go.id/detail_koleksi (Accessed September 29, 2024).

Hartini, S. 2015. Lycopodiaceae in the Sicike-cike Area, North Sumatra. Ecology, 15(2), pp. 1-9.

Lubis, A. F., Manalu, K., & Rahmadina. 2020. Identifikasi Famili Ericaceae di Taman Wisata Alam Danau Sicikeh-Cikeh Desa Lae Hole Kecamatan Parbuluan Kabupaten Dairi Sumatera Utara. Jurnal KLOROFIL, 4(1), pp. 25-30.

Wawo, H. A., Hidayat, A. R., Setyowati, N., & Lestari, P. 2021. Keragaman Koleksi Rhododendron dan Tanggapan Bunganya Terhadap Suhu Udara di Sekitarnya serta Kendala dalam Pengayaan Jenisnya di Kebun Raya Biologi Wamena. Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati, 6 (3), pp. 203-215.

Aldilla, R., V. 2018. Turunan Flavonoid dari Daun Rhododendron retusum (Ericaceae). Skripsi. Perpustakaan Digital ITB.

Tambaru, E. 2015. Identification of Morphological and Anatomical Characteristics of Flacourtia inermis, Roxb, in the Campus Area of Hassanudin Tamalanrea University Makassar. Journal of Natural and Environmental Sciences, 6(11), pp. 37-41.

Sabandar & Agave. 2021. Structure of Epidermal Cells and Stomata Alegiceras corniculatum and Rhizophora alpiculata in the Estuary of the River of Poka Village and Leahari Village. Journal of Biology Science and Education, 10 (1), pp. 81-87.

Anua, O., Henny L., Rampea, Johanis J., & Pelealua. 2017. Epidermal Cell Structure and Leaves Stomata of Several Plants of the Euphorbiaceae Tribe, Journal of Mipa Unsrat Online, 6(1), pp. 69-73.

Buckley, T.N. 2019. How stomata respond to water status. pp. 21–36.

Kamaluddin, Wiguna, A.G., & Rizki, M. 2020. Characteristics of Stomata on Various Types of Tree Leaves Around the University of Timor Campus. Journal of Mathematics and Science Networks, 2(1), pp. 29-31.

Andriani, Mega, & Chaltri, M. 2022. Types of Stomata of Several Species of the Rosalceale Family. Leading SEMNAIS BIO, 1(2), pp. 1450-1454.

Juairiah, L. 2014. Study on the Characteristics of Stomata of Several Types of Revegetation Plants in Post-Tin Mining Land in Bangka. Widyariset, 17(2), pp. 213–218.

Rahman, A.A., & Oladele, F.A. 2003. Types of Stomata Complexes, Stomata Size, Density and Index in Several Vegetable Species in Nigeria. Nigerian Journal of Botany, 16, pp. 144–150.

Lopez, A. M., & Rojas, A. 2017. Stomatal Density, Leaves Area and Plant Size Variation of Rhizophora Mangle (Malpighiales: Rhizophoraceae) along A Salinity Gradient in The Mexican Caribbean. Revista de Biología Tropical, 65(2), pp. 37-41.

Schletz, R. 2008. Stomata densities of developing and mature leaves of geraniums. ESSAI, 6(1), 42.

Mudakir, M., Pujiastuti, Asyiah, N. I., Murdiyah, S., and Novenda, L. I. 2021. Comparison of Leaves Morphology and Stomatal Characteristics of Frangipani (Plumeria acuminata) in Polluted and Not Polluted Place. Bioedukasi: Biology Journal and Its Learning, XIX(1), 15-19

Xu, Z. and Zhou, G. 2008. J. Exp Bot, 59(12), 3317-3325.

Jaya, A.B., Tambaru, E., Latunra, A.I., & Salam, M.A. 2015. Comparison of Characteristics of Leguminosae Tree Leaves Stomata in the Urban Forest of Hasanuddin University and on Jalan Tamalate, Makassar. Journal of Biodiversity, 7 (1), pp. 6.

Juairiah, L. 2014. Study on the Characteristics of Stomata of Several Types of Revegetation Plants in Post-Tin Mining Land in Bangka. Widyariset, 17(2), pp. 213–218.

Halimatussadiah, S., Djuita, R.N., & Chikmawati, T. 2023. Variations of Terrestrial Fern Plant Scales at IPB Campus, Dramaga, Bogor. Journal of Biological Resources, 9(3), pp. 109-118.

Li, X., Cui, Z., Liu, X., Hong, Z., Zhang, P., & Xu, D. 2022. Comparative Morphological, Anatomical and Physiological Analyses Explain the Difference of Wounding-Induced Agarwood Formation between Ordinary Agarwood Nongrafted Plants and Five Grafted Qi-Nan Clones (Aquilaria sinensis). Forests, 13(10), 1618.

Xia, X., Gong, R., & Zhang, C. 2022. Integrative Analysis of Transcriptome and Metabolome Reveals Flavonoid Biosynthesis Regulation in Rhododendron pulchrum petals. BMC Plant Biology, 22, 401.

Wang, D., Liu, G., Yang, J., Shi, G., Niu, Z., Liu, H., Xu, N., & Wang, L. 2024. Integrated Metabolomics and Transcriptomics Reveal Molecular Mechanisms of Corolla Coloration in Rhododendron dauricum L. Plant Physiology and Biochemistry, 207, 108438.

Xiao, P., Zhang, H., Liao, Q., Zhu, N., Chen, J., Ma, L., Zhang, M., & Shen, S. 2023. Insight into the Molecular Mechanism of Flower Color Regulation in Rhododendron latoucheae Franch: A multi-omics approach. Plants, 12(16), 2897.

Shi, X., Wang, Y., Gong, S., Liu, X., Tang, M., Tang, J., Sun, W., Yi, Y., Gong, J., & Zhang, X. 2024. The Preliminary Analysis of Flavonoids in the Petals of Rhododendron delavayi, Rhododendron agastum, and Rhododendron irroratum infected with Neopestalotiopsis clavispora. International Journal of Molecular Sciences, 25(17), 9605.

Ningsih, I. S., Chatri, M., Advinda, L., & Violita. 2023. Flavonoid Active Compounds Found in Plants. Serambi Biologi, 8(2), pp. 126-132.

Kumar, V., Suri, S., Prasad, R., Gat, Y., Sangma, C., Jakhu, H., & Sharma, M. 2019. Bioactive Compounds, Health Benefits and Utilization of Rhododendrons: A Comprehensive Review. Journal of Agriculture and Food Security, 8(6).

Saha, S., & Verma, R.J. 2016. Antioxidant Activity of Polyphenol Extract of Terminalia chebula Retzius Fruit. J. Taibah Univ Sciv,10(6), pp. 805-812.

Lin, C.Y, Lin, L.C, Ho, S.T., Tung, Y.Y., Tseng, Y.H., & Wu, J.H. 2014. Antioxidant and Activity and Phytochemical Leaves Extracts of 10 Species of Rhododendron Native in Taiwan. Evid Based Complementary Alternat Med, 9.

Nisar, M., Ali, S., Qaisar, M., Gilani, S.N., Shah, M.R., Khan, I., & Ali, G. 2013. Antifungal Activity of Bioactive Constituents and Bark Extract of Rhododendron arboreum. Bangladesh J Farmako. Vol. 8, pp. 218–222.

Grimbs, A., Shrestha, A., Rezk, A. S. D., Grimbs, S., Said, I. H., Schepker, H., Hütt, M.-T., Albach, D. C., Brix, K., Kuhnert, N., & Ullrich, M. S. 2017. Bioactivity in Rhododendron: A Systemsic Analysis of Antimicrobial and Cytotoxic Activities and Their Phylogenetic and Phytochemical Origins. Frontiers in Plant Science, 8, Article 551.

Yang, Q., Li, Z., Ma, Y., Fang, L., Liu, Y., Zhu, X., Dong, H., & Wang, S. 2024. Metabolite Analysis Reveals Flavonoids Accumulation during Flower Development in Rhododendron Pulchrum Sweet (Ericaceae). PeerJ, 12, e17325.

Yeni, G., Syamsu, K., Mardliyati, E., & Muchtar, H. 2017. Determination of Process Technology for Making Pure Gambir and Standardized Catechins from Asalan Gambir. Journal of Industrial Research and Development, (7)1, pp. 1-10.

Mihra, Jura, M.R, & Ningsih, P. 2018. Analysis of Tannin Levels in Neem Leaves Extract (Azadirachta indica A.Juss) with Water and Ethanol Solvents. J. Academician Kim., 7(4), pp. 179-184.

Chairunnisa, S., Wartini, M.N., Suhendra, L., Darmapatni, K.A.G. 2016. Development of GC-MS Method for Determination of Acetaminophen Levels in Human Hair Specimen. Journal of Postgraduate Bioscience, 18(3), pp. 255-266.

Wahyuni, D.T. & Widjanarko, S.B. 2015. Effect of Solvent Type and Extraction Time on Yellow Pumpkin Carotenoid Extract by Ultrasonic Wave Method. Journal of Food and Agroindustry, 3(2), pp. 390-401.

Irwan, A., & Junaidi, A.B. 2020. Preliminary Study of Metabolomics on Methanol Extract of Lime Pulp with Untargeted GC-MS Analysis. Seminar of the National Chair of the Wetland Environment, 5(3), pp. 27–31.

Chauhan. 2014. GC-MS Technique and Its Analytical Applications in Science and Technology. Journal of Analytical & Bioanalytical Engineering, 5(6), pp. 1–5.

Anggraito, Yu, Rusanti, R., Iswari, R.S., Yuniastuti, A., Lisdiana., Nugrahaningsih., Habibah, N.A. 2018. Secondary metabolites of plants: application and production. Thesis: FMIPA, Semarang State University.

Gbolahan, B.W., Abiola, A.I., Kamaldin, J., Ahmad, M.A., & Atanassova, M.S. 2016. Accession in Centella asiatica; Current Understanding and Future Knowledge. Journal of Pure and Applied Microbiology. 10(4), pp. 2485-2494.

Govarthanan, M., Rajinikanth, R., Kamala-Kannan, S., & Selvankumar, T. 2015. A Comparative Study of Bioactive Constituents Between Wild and in Vitro Propagated Centella Asiatica. Journal of Genetic Engineering and Biotechnology, 13, pp. 25-29.

Austen, N., Walker, H.J., Lake, J.A., & Phoenix, G.K. 2019. Regulation of Plant Secondary Metabolism in Response to Abiotic Stress: The Interaction Between Heat Stroke and Increased CO2. Frontiers in Plant Science. 10(1463), 1-12.

Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K.M. 2021. Biosynthesis of plant secondary metabolites and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 1–31.

Popa, I., Babeanu, N., Nița, S., and Popa, O. 2014. Squalene-Natural Resources and Applications. Farmacia, 62, pp. 840–862.

Grande, L. A. M., Gorinstein, S., Rangel, E. E., Ortiz, D. G., and Ayala, M. L. A. 2018. Plant Sources, Extraction Methods, and Uses of Squalene. International Journal of Agronomy, 2018(1).

Micera, M., Botto, A., Geddo, F., Antoniotti, S ., Bertea, M. C., Levi, R., Gallo, P. M., and Querio, G. 2020. Squalene: More than a Step toward Sterols. Antioxidants, 9(8), 688.

Guneş, F. E. 2013. Medical Use of Squalene as a Natural Antioxidant. Journal of Marmara University Institute of Health Sciences, 3(4).

Sari, P.K.W., & Muslimin. 2022. Identification of Potential Antioxidant Compounds in Chocolate Macroalgae Turbinaria ornata from Gunung Kidul Beach, Yogyakarta. Journal of Aquaculture Research, 17(3).

Chemistry Book. 2024. CAS Database List "2,6-Difluorobenzoic Acid". Available at: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3384505.htm (Accesed December 9, 2024).

AmBeed. 2024. CAS No. 385-00-2 "2,6-Difluorobenzoic Acid". Available at: https://www.ambeed.com/products/385-00-2.html (December 9, 2024).

Tpiohio. 2024. Plasticizer. Available at: https://www.tpiohio.com/plasticizers/ (Accesed December 9 , 2024).

Eastman Chemicals. 2024. Eastman™ Non-Phthalate Plasticizer for Water Adhesives. Available at: https://adhesives.specialchem.com/_/media/comax/adhesives/existing-clnt/eastman-plasticizers/pdfs/eastman-non-phthalate-plasticizers-for-waterborne-adhesives.pdf (Accesed December 9 , 2024).

Special Chemistry. 2024. "Polymer Additives" Material Selection Platform. Available at: https://polymer-additives.specialchem.com/tech-library (Accesed December 9, 2024).

Ataman. 2024. Product "Diethyl Phthalate". Available at: https://www.atamanchemicals.com/diethyl-phthalate_u27289/ (Accesed December 9, 2024).

Pubchem. 2024. Summary of "Diethyl Phthalate" Compounds. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/6781 (Accesed December 9 , 2024).

Mun'iem, F., Damayanti, S.D., & Hakim, R. 2022. Prediction of Annona Muricata Linn. Leaves as Antidiabetics through SUR-1 Protein Activation and SGLT-2 Inhibition with In Silico Study. Journal of Aquaculture Research, 17(3).

Khotimah, A.M., Rini, S.S., & Purwaningsih, Y.D. 2024. Pre-Design of Anhydride Acetate Plant from Acetic Acid Using a Ketene Process with a Capacity of 22,000 Tons/Year. SENASTITAN IV.

Najib, A.L. 2021. Prediction of Phytoestrogen Compounds with Antiosteoporosis Potential in Ethanol Extract 96% Leaves of Chrysophyllum cainito L. Against Estrogen Receptors Α (1A52) and Β (3OLS) in Silico. Thesis, Maulana Malik Ibrahim State Islamic University, Malang.

Shaaban, T.M., Ghaly, F.M., & Fahmi, M.S. 2021. Antibacterial Activity of Methyl Esters, Hexadecanoic Acid, and Green-Synthesized Silver Nanoparticles Against Multidrug-Resistant Bacteria. Journal of Basic Microbiol, 61(6), pp. 557-568.

WebBook. 2024. NIST Chemistry Web Book "Hexadecanoic acid, methyl ester". Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C112390 (Accesed 12 December 2024).

Merck. 2024. Reference Agent of Methyl Decanoate for Gas Chromatography, CAS 110-42-9, Molar Mass 186.29 g/mol. Available at: https://www.merckmillipore.com/ID/id/product/Methyl-decanoate,MDA_CHEM-109637 (Accesed December 12, 2024).

Pubchem. 2024. Summary of "Dibutyl Phthalate" Compounds. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/3026 (Accesed 9 December 2024).

Department of Health and Aging NICNAS. 2013. Hazard Assessment Report of Existing Chemicals "Dibutyl Phthalate". Available at: https://www.industrialchemicals.gov.au/sites/default/files/PEC36-Dibutyl-phthalate-DBP.pdf (Accesed December 12, 2024).

Pubchem. 2024. Summary of the Compound "Methyl Linolenate". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/5319706 (Accesed December 12, 2024).

Chemistry Book. 2024. Methyl Linolenate. Available at: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB5422197.htm (Accesed December 12, 2024).

Mu'nisa, A., Syamsia, Rachmawaty, & Muflihunna. 2017. Analysis of Active Compounds in Several Medicinal Plants from West Sulawesi. National Seminar "Building Indonesia through Research Results”, pp. 635-637.

Yoga, K. 2021. Antiproliferation Test of Asoka Leaves N-hexane Partition (Ixora Coccinea L.) against T47D Cancer Cells through MMP-9 Inhibition In Vitro. Thesis, Sanata Dharma University.

Erliana, D., Banon, C., Avidlyandi, A., Febriansyah, R., & Adfa, M. 2022. Termiticidal Activity of Methanol Extract of Gotu Gotu (Centella Asiatica L. Urban) against Coptotermes Curvignathus Holmgren. Journal of Mangifera Edu, (6)2.

Yusoff. 2017. Optimization of Polyphenol Recovery from Defined Roselle Seeds Using Microwave-Assisted Extraction. Thesis, University of Sciences Malaysia.

IMAP Group Assessment Report. 2020. Long-chain alkyl oxoranes: Assessment of human health level II. Available at: https://www.industrialchemicals.gov.au/sites/default/files/Long-chain%20alkyl%20oxiranes_Human%20health%20tier%20II%20assessment.pdf (Accesed 12 December 2024).

WebBook. 2024. NIST Chemistry WebBook "Oxirane, tetradecyl-". Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=7320-37-8 (Accesed December 9 , 2024).

Wicaksono, Rahadian, R., Leksono, S.A, Mahendra, P.W.A, & Damanhuri. 2024. The Potential of Live Plants and Extracts of Two Varieties of Mother-in-law's Tongue (Sanseviera) as a Reducing Carbon Monoxide Gas in Cigarette Smoke. Doctoral thesis, Brawijaya University.

Johannes, E., Latunra, I.A, Tuwo, M., & Sukmawaty, S. 2021. Effectiveness of Water Hyacinth Leaves Extract of Eichornia crassipes as an Anticancer Ingredient in MCF-7 Tumor Cells by In Vitro and In Silico Methods. Journal of Natural and Environmental Sciences, 12(1), pp. 39-44.

Junairiah, Amalia, E.A., Ni'matuzahroh, & Nurhariyati, T. 2020. Identification of Phytochemical Compounds in Ethanol and N-hexane Leaves Extracts of Piper retrofractum Vahl. by Gas Chromatography Mass Spectrometry. Moroccan Journal of Chemistry 8SI, 32-37.

Pubchem. 2024. Summary of "Octinoxate" Compounds. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/5355130 (Accesed December 9 , 2024).

ContaminantsDB. 2024. 2-Propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester (CHEM012751). Available at: https://contaminantdb.ca/contaminants/CHEM012751 (Accesed December 12, 2024).

Molbase. 2024. 1,5,9-Undecatriene,2,6,10-trimethyl-,(Z)-. Available at: https://www.molbase.com/cas/62951-96-6.html (Accesed December 12, 2024).

Basis of the spectacle. 2024. (5Z)-2,6,10-Trimethyl-1,5,9-undecatriene. Available at: https://spectrabase.com/spectrum/FZGZXgN6aOx (Accesed 9 December 2024).

Lookchem. 2024. 4-Octene, 2,2,7,7-tetramethyl-3,6-bis(methylene), (Z)-. Available at: https://www.lookchem.com/Molecular-Formula/C14H24.html (Accesed December 9, 2024).

Guidechem. 2024. 1,5,9-Undecatriene,2,6,10-trimethyl-, (E)- 62947-45-9. Available at: https://www.guidechem.com/dictionary/en/62947-45-9.html (Accessed December 12, 2024).

Pubchem. 2024. Summary of Compounds "Squalene". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/638072 (Accesed December 9, 2024).

Hendiyani, M., Bebas, W., & Budiasa, K.M. 2018. Addition of Alpha Tocopherol in Diluent on Motility and Viability of Spermatozoa of Pelung Chicken at 4°C. Indonesia Medicus Veterinus, 7(2), 168-176.

Wulansari, R. 2022. Analysis of Secondary Metabolite Compounds and Natural Larvicide Activity Test on Ethanol Extract of Bidara Leaves (Ziziphus Mauritiana Lamk.) against Aedes Aegypti Larvae. Thesis, Maulana Malik Ibrahim State Islamic University.

Song, W.C., Park, M.J., Chung, C.S., Lee, Y.S., & Song, H. 2019. Production of 2,3-butanediol Microbes for Industrial Applications. Journal of Microbiology and Industrial Biotechnology, 46(11), pp. 1583-1601.

Lee, G.Y. & Soe, H.J. 2019. Production of 2,3-Butanediol from Cassava Glucose and Hydrolysate by Metabolically Engineered Industrial Polyploid Saccharomyces Cerevisiae. Biofuel Biotechnology, 12, pp. 204.

Bai, Y., Feng, H., Liu, N., & Zhao, X. 2023. 2,3-Butanadiol Derived from Biomass and Its Application in Biofuel Production. Energies, 16(15), pp. 5802;

Haskali, B.M., Farnsworth, L.A., Roselt, D.P., & Hutton, A.C. 2020. The Activated Ester of 4-Nitrophenyl is the Superior Syntone for the Indirect Radiofluorination of Biomolecules. RSC Medical Chemistry, 11(8), 919-922.

Amiruddin. 2020. Synthesis of Acrylamide Compound N-Butyl-3 (4-hydroxyphenyl) and Its Antioxidant and Inhibition Test Against Tyrosine Kinase Enzyme. Thesis, Hasanuddin University.

ChemWhat. 2024. 2,2,4-Trimethyl-1,3-Pentanediol Diisobutyrate CAS#: 6846-50-0. Available at: https://www.chemwhat.id/224-trimetil-13-pentanediol-diisobutirat-cas-6846-50-0/ (Accesed December 9, 2024).

Pubchem. 2024. Summary of Compound "2,2,4-Trimethyl-1,3-pentanediol diisobutyrate". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/23284 (Accesed December 9, 2024).

WebBook. 2024. NIST Chemistry WebBook "2,4,4-Trimethylpentane-1,3-diyl bis(2-methylpropanoate)". Available at: https://webbook.nist.gov/cgi/inchi/InChI=1S/C16H30O4/c1-11(2)14(17)19-9-13(5)8-16(6,7)10-20-15(18)12(3)4/h11-13H,8-10H2,1-7H3 (Accesed 9 December 2024).

Ambeed. 2024. CAS Number 6846-50-0 ] 2,2,4-Trimethylpentane-1,3-diyl bis (2-methylpropanoate). Available at: https://www.ambeed.com/products/6846-50-0.html (Accesed 9 December 2024).

Junilawati, R., & Nurani, S. N. 2019. Pre-Design of Diethyl Phthalate Plant from Phthalic Anhydride and Ethyl Alcohol with a Capacity of 35,000 Tons/Year. Journal of Chemical Engineering.

Pubchem. 2024. Summary of "Diethyl Phthalate" Compounds. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/6781 (Accesed December 9, 2024).

Ningrum, Y.N., Setyaningrum, E., Farisi, S., & Ekowati, N.C. 2023. GC-MS Analysis of Acetone and N-Hexane Extract of Seaweed (Eucheuma Cottonii) as an Antimalarial Candidate. Scientific Forum, 20(2), pp. 57-65.

Alia, A., Gani, Mukarlina, & Rusmiyanto, P.W.E. 2017. Profile of GC-MS and Bioherbicide Potential of Methanol Extract of Ketapang Leaves (Terminalia catappa L.) against Purple Maman Weed (Cleome rutidosperma D.C.). Journal of Protobiont, 6(2), pp. 22 – 28.

Pubchem. 2024. Summary of Compounds "3,7,11,15-Tetramethyl-2-hexadecen-1-OL". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/5366244 (Accesed December 9, 2024).

Novian, R.D. 2019. Exploration of the Anti-Malaria Potential of Bioactive Compounds of Moringa Oleifera with the In Silico Approach. As-Syifaa Journal of Pharmacy, 11(2), pp. 124-130.

Puspita, D., Wulandari, S.T., Wahyu, D.F., & Rahardjo, M. 2019. Analysis of Bioactive Compounds in Sengkawang Oil (Shorea Sumatrana) with GC-MS. Journal of Food and Nutrition Technology, 18(2), pp. 64-73.

Widyastuti, R.C. & Dewi, C.A. 2015. Biodiesel Synthesis from Chlorella Vulgaris Microalgae Oil by Transesterification Reaction Using Koh Catalyst. Journal of Renewable Natural Materials, 4(1), 29-33.

Shaaban, T.M., Ghaly, F.M., & Fahmi, M.S. 2021. Antibacterial activity of methyl esters, hexadecanoic acid, and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiol, 61(6), pp. 557-568.

ChemistryBook. 2024. CAS Database List "Methyl palmitate". Available at: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB7783577.htm (Accesed December 9, 2024).

NIH Inxight Drugs. 2024. Methyl palmitate. Available at: https://drugs.ncats.io/drug/DPY8VCM98I (Accesed December 9 , 2024).

ChemistryBook. 2024. CIS-11,14,17-Methyl Ester Eicosatrienoic Acid. Available at: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3338225.htm (Accesed December 12, 2024).

Nakagawa, Y. 2020. Classification of samples unknown by fatty acids. Shimadzu, 1(M307), pp. 1-2.

WebBook. 2024. NIST Chemistry "11,14,17-Eicosatrienoic Acid, Methyl Ester". Available at: https://webbook.nist.gov/cgi/inchi?ID=C55682887&Mask=200 (Accessed December 9, 2024).

WebBook. 2024. NIST Chemistry "9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)-". Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C301008&Mask=200 (Accesed December 9 , 2024).

Kurav, K. & Rathod, J.V. 2018. Gas Chromatography–Mass Spectrometry Analysis of Methanol Extract Zanthoxylum rhetsa dc. Fruits. Asian Journal of Pharamaceutial and Clinical Research, 11(12), 247-254.

Awaludin, Yulma, & Kartina. 2019. Identification of Secondary Metabolites from Epane Extract of Ciplukan Leaves (Physalis angulate) and Toxicity Test in Post-Larval Larvae of Tiger Shrimp (Penaeus monodon). Scientific Journal of Fisheries and Marine Affairs, 11(2), 92-99.

Pubchem. 2024. Summary of "Phytol" Compounds. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/5280435 (Accesed December 9 , 2024).

PubMed. 2024. Summary of Compounds "Squalene". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/638072 (Accesed December 9 , 2024).

Carvalho, S.M.A, Heimfarth, L., Pereira, M.W.E., Oliveira, S.F., Menezes, A.R., Coutinho, M.D.H, Picot, L., Antoniolli, R.A., Quintans, S.S.J, & Junior, Q.J.L. 2020. Phytol, A Component of Chlorophyll, Produces Antihyperalgesic, Anti-Inflammatory, and Antirheumatic Effects: Possible Involvement of the NFκB Pathway and Decreased Levels of the Proinflammatory Cytokines TNF-α and IL-6. Journal of Natural Products, 8394, pp. 107-117.

Costa, Oliveira, S.D.J, Junior, R.M.L., Freitas, D.M.R. 2014. Natural Diterpenoid Phytol with Pharmacological Applications on the Central Nervous Systems: A Review. Pat Biotechnol Update, 8(3), pp. 194-205,

Islam, M.T., Ali, E.S., Uddin, S.J., Shaw, S., Islam, M.A., Ahmed, M.I., ... & Atanasov, A.G. 2018. Phytol: Review of Biomedical Activities. Food and Chemical Toxicology, 121, pp. 82-94.

Labbozzetta, Poma, P., Tutone, M., McCubrey, A.J., Sajeva, M., & Notarbartolo, M. 2022. Phytol and Heptacosane are Possible Tools to Address Multidrug Resistance in In Vitro Models of Acute Myeloid Leukemia. Medicine 15(3), p. 356.

Pubchem. 2024. Summary of "Octinoxate" Compounds. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/5355130 (Accesed December 9, 2024).

Nagorka, R. & Duffek, A. 2021. Under the Influence of Regulation: Spatial-Temporal Trends Of UV 2-Ethylhexyl-4-Methoxycinnamate (EHMC) Filters In German Rivers. European Environmental Science, 33(8), 1-10.

HandomChem. 2024. Product "2-Ethylhexyl trans-4-methoxycinnamate". Available at: https://www.handomchemicals.com/2-ethylhexyl-trans-4-methoxycinnamate-product/ (Accesed December 9, 2024).

Osuntokun, T. O. & Cristina, M. G. 2019. Bio Isolation, Chemical Purification, Identification, Antimicrobial, and Synergistic Efficacy Essential Oil Extracted from Mombin Spondias (Linn) Stems Bark Extract. Mol Biol International Journal, 4(4), pp. 135-143.

Bench Chemistry 2024. Synopsis. Available at: https://www.benchchem.com/product/b143559 (Accesed December 9, 2024).

Nitulescu, G., Lupuliasa, D., Dima, A.I., & Nitulescu, M.G. 2023. Ultraviolet Filters for Cosmetic Applications. Cosmetics, 10(4), p.101.

Arya, A. & Jha, J. 2020. New UV Filtering Agents for the Next Generation of Cosmetics from Phytochemicals to Inorganic Nanomaterials. New Drug Delivery Systems for Phytoconstituents.

National Library of Medicine. 2024. Di(2-ethylhexyl) adipat. Available at: https://www.ncbi.nlm.nih.gov/books/NBK390864/ (Accessed December 9, 2024).

Choudhary, D., Shekhawat, J.K., & Kataria, V. 2019. GC-MS Analysis of Bioactive Phytochemicals in Methanol Extracts of Aerial Parts and Callus of Dipterygium glaucum Decne. Journal of Pharmacogen, 11(5), pp. 1055-1063.

Beulah, G.G., Soris, T.P., Mohan, R.V. 2018. GC-MS Determination of Biosynth Bioactive Compounds. International Journal of Pharmaceutical Sciences and Research 9(10), pp. 4100-4105.

El-Shahaby, A.O., El-Zayat, M.M., El-Fattah, A.G,, & El-Hefny, M.M. 2019. Evaluation of the Biological Activity of Capparis spinosa var. aegyptiaca essential oil and fat constituents as anticipated antioxidant and antimicrobial agents. Advances in Chemical and Biochemistry Research, 2(4), pp. 211-221.

Alghamdi, A., Alshehri, W., Sajer, B., Ashkan, M., Ashy, R., Gashgari, R., & Hakmi, H. 2023. Biological Activity and GC-MS Analysis of Aloe Vera and Opuntia ficus-indica Extracts. Journal of Chemistry, vol. 1.

WebBook. 2024. NIST Chemistry "4,8,12,16-Tetramethylheptadecan-4-olide". Available at: https://webbook.nist.gov/cgi/inchi/InChI=1S/C21H40O2/c1-17(2)9-6-10-18(3)11-7-12-19(4)13-8-15-21(5)16-14-20(22)23-21/h17-19H,6-16H2,1-5H3 (Accesed 9 December 2024).

WebBook. 2024. NIST Chemistry "Hectandioic acid, dioctyl ester". Available at: https://webbook.nist.gov/cgi/cbook.cgi?InChI=1%2FC22H42O4%2Fc1-3-5-7-9-11-15-19-25-21%2823%2917-13-14-18-22%2824%2926-20-16-12-10-8-6-4-2%2Fh3-20H2%2C1-2H3 (Accesed December 9, 2024).

Pubchem. 2024. Summary of Compounds "4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1H-picen-3-ol". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/225688 (Accesed December 9, 2024).

Asfar, A. I. M. A., Rifai, A., Asfar, T. I. M. A., & Suparman. 2021. Characterization of Antioxidants in Trigona Spp. Honeycomb Waste by Gcms Method. Leading the 5th National Seminar on Research & Community Service, 978-623-98762-1-0.

Wahdaningsih, S., Untari, K.E., & Fauziah, Y. 2014. Antibacterial n-Hexane Fraction of the Skin Hylocereus polyrhizus against Staphylococcus Epidermidis and Propionibacterium acnes. Pharmaceutical Sciences, 1(3).

Pubchem. 2024. Summary of Compounds "Squalene". Available at: https://pubchem.ncbi.nlm.nih.gov/compound/638072 (Accesed December 9, 2024).

Harlen, C.W., Muchtadi, T., & Palupi, S. N. 2017. Bioavailability of α-Tocopherol Palm Oil Emulsion Beverage in Blood Plasma and Liver of Rats (Rattus norvegicus). AGRITECH, 37(3), pp. 352-361,

Hendiyani, M., Bebas, W., & Budiasa, K.M. 2018. Addition of Alpha Tocopherol in Diluent on Motility and Viability of Spermatozoa of Pelung Chicken at 4°C. Indonesia Medicus Veterinus, 7(2), pp. 168-176, doi: 10.19087/imv.2018.7.2.168.

Syamsul, S., K., Amanda, A.N., & Lestari., D. 2020. Comparison of Aquilaria Malaccensis Lamur Extract with Maseration and Reflux Methods. Indonesian Journal of Pharmaceutical Research, 2(2).

Downloads

Published

2025-04-28